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function in the crystal almost vanishes in the shaded 
region in Fig. 2, and the wave which departs from the 
aperture Sa depends only on the wave function in the 
region a'b'b" a". 

Diffraction by a polyhedral crystal 

In the case of a polyhedral crystal, we divide the crystal 
as shown in Fig. 3; then we can calculate the wave 
functions for each division from (3) to (7). Their super- 
position satisfies approximately the boundary con- 
dition on the whole crystal surface by the above con- 
siderations and therefore represents the wave-field for 
a finite crystal of polyhedral shape according to the 

dynamical theory. Further calculation of (8) and com- 
parison with the kinematical theory will be given in the 
next note. 
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In the previous note (Kato & Uyeda, 1951), we have 
shown that Bethe's dynamical theory of electron dif- 
fraction (Bethe, 1928) can be extended to the case of a 
finite crystal. In the present note, we shall develop the 
theory further and compare its results with those 
derived from the kinematical theory. 

Dynamical  and kinematical formula for 
a polyhedral crystal 

The equation (7) of the previous note, which gives the 
diffracted wave due to one of the divisions of a crystal 
shown in Fig. 3 there, can be approximated by a more 
practical formula, provided the conditions described 
in the previous note are satisfied. The final formula for 
the diffracted amplitude at large distance, R, from the 
crystal turns out to be 

1 [V~ll 
Og(R) = 2iR ~/(u ~ + w e) exp 2niKR 

× [exp2ni{(d:,Re)+(d', ,Ra)}fzexp21ri(A'~,s)ds 

2--i (/jtt Re)-Aw(d:,Ra)}~ exp2fl'i(f[d,S)dSJ; - e x p  /i/(oe, 
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(1) 
here V21 is Bethe's dynamical structure factor which is 
approximately equal to the Fourier coefficient Vg of the 
crystal potential, and w stands for 

(I V21 [/K)~]{kg, n~)/(ko, n~)}. 

The notations used are explained in the legends of 
Figs. 1 and 3 of the preceding note. 

On the other hand, the kinematical theory gives the 
expression of the amplitude diffracted by a finite crystal 
as follows: 

q~g(ll) = ~ vg exp 2rri(K e + g - Kg, r) dr, (2) 

where the integral covers the whole volume of the 
crystal, C. If  we consider the wave due to one of the 
divisions as above, the integration is limited to this 
division, and we can rewrite (2) as follows: 

k 1 ~ exp 2niKR 
q)g(R) = 2 -~  u 0 

x [exp 2ni(de, Re) f ~exp 2.i(A~, s) ds 

-exp2~i(da, Ra) f ~exp2ni(A~,s)dsJ, (3) 

where the notations are given in Fig. 1 of this note, and 
the other notations are the same as those in the previous 
note. 

Discussion by means o f  Intensitiitsbereich 

The interpretation of the kinematical formula (3) can 
be given most clearly by making use of the conception 
of Laue's Intensi~tsbereich (Laue, 1936) in Ewald's 
construction of the wave vector. This construction can 

be obtained in Fig. 1 if we transfer the vector Kg- A G 
by parallel displacement so that  the initial point A 
coincides with the point E. Then, the end-point G is 

displaced to a new point, say Q, and GQ=AE, which 
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is expressed by - (d~ + A~) = - (d~ + A~,). The point Q 
and a part  of the Ewald sphere near the lattice point G 
are-illustrated in a new diagram, Fig. 2 (a). When we 
consider the case where the projected aperture Z extends 

infinitely, the diffraction function ~exp2ni (A,  s) ds 
q J  

becomes a &type function and the Intensi~tsbereich is 
contracted to the normals of the crystal, n~ and ha, 
passing through the point G, and the two diffracted 
spots appear corresponding to Q~ and Q~k. 
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Fig. 1. Schematic diagram illustrating wave points projected 
on OES~ plane. 

E J = u  o (corresponding to u in Fig. 1 of the previous note). 
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Fig. 2. Diagrams illustrating the geometrical interpretation 
of equations (1) and (3). 

G: reciprocal lattice point. 

Q : end point of the vector I~  = E Q .  

GR or GaR is perpendicular to Ewald sphere. 
> -~  

(a) Kinematical: G Q ~ = - d e ,  G Q ~ = - - d a ;  

Q[Q = - A ~ ,  Q~Q = - A ~ ,  G R  = u o . 

(b) Dynamical: GQ~ = - (d~ + da), GQ~ = - (d~' + da); 
-' / >  -->- 
Q a Q = - - A ' ~ ,  Q ' ~ Q = - - A ~ ;  G a R = u .  

When the crystal is finite, the diffraction function 
does not vanish at all points Q in the neighbourhood of 
the point G, and the diffracted beams become diffuse. 
I f  the two terms in (3) are independent of each other, 
the intensity on the normals varies according to 

(v~/uo) ~, but their interference produces maxima and 
minima. 

Although the dynamical formula (1) is rather com- 
plicated, it can be interpreted along the same lines. 
Fig. 2 (b) shows the dynamical diagram which corre- 
sponds to Fig. 2 (a). When the crystal has an infinite 
lateral extension the Intensitiitsbereich is contracted to 
the hyperbola whose asymptotes are the normals n e 

and n a passing through a point Ga(GGa = A L E L ) ,  and the 
n 

diffracted spots appear corresponding to Q~ and Qa. The 
splitting of the diffracted spots occurs, in this case, 
even when the Ewald sphere passes through the point 
G a. When the crystal is finite the wave functions de- 
signated with single and double primes become diffuse 

• > 

around the wave vectors EQ~ and EQ~ according to the 
diffraction function of the projected aperture, Z, which 
has the same form as in the case of the kinematical 
theory. 

When the effective mean inner potential is neglected, 
the points G and Ga coincide. Moreover, the dynamical 
formula (1) can be reduced approximately to an 
expression identical with the kinematical formula (3) 
by a short calculation, provided one of the following 
conditions (1) or (2) is satisfied, i.e. ff extinction is 
small: 

(1) The product of the maximum thickness of the 
crystal, Pmax., and the reflecting power, w, of the net  
plane is very small, i.e. Pmax. w ~ 1. 

(2) The direction of the incident beam differs con- 
siderably from the direction which satisfies exactly the 
Bragg condition, i.e. w~u. 

In the above consideration, we have applied the con- 
ception oflntensitdtsbereich to the dynamical theory and 
obtained a clear interpretation of the result. I t  must, 
however, be mentioned here that  in the case of the 
kinematical theory the Intensitdtsbereich is fixed in the 
reciprocal lattice, but, in the case of the dynamical 
theory, it is deformed according to the azimuth of the 
primary beam around g. 

Numerical example 
We have performed a numerical calculation for the (100) 
reflexion on a cubic crystal of cubic shape. We adopted 
a set of numerical values nearly equal to those obtained 
by Sturkey (1948) for MgO: 

V 0 - -  V i i  > 14 eV., v o -  Ve2 ~ 14 eV., I V~t I ~ 7 eV. 

and the energy of incident electrons E = 3 5 k e V .  We 
assumed the incident beam to be parallel to the face 
diagonal and to satisfy the Bragg condition strictly, 
i.e. u = 0. We divided the crystal into two parts following 
the procedure mentioned in the previous note and 
superposed the diffracted waves due to both. When the 
crystal is very small, c. 30A., no difference appears 
between the results of the two theories; when the 
crystal becomes larger than c. 50A., the difference 
becomes discernible, but the doubly refracted spots are 
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not distinguishable as long as the crystal is smaller than 
c. 270 A. 

Although the present theory disregards the effects of 
inelastic scattering, it may be useful to interpret the 
fine structure and anomalous intensity observed in the 
electron-diffraction patterns, and it may serve also for 
a better understanding of results observed in electron 
micrographs and diffraction patterns of convergent 
electron beams (e.g. Heidenreich, 1942). 

We hope soon to give elsewhere a more detailed 
derivation of the formulae, together with the inter- 
pretation of the results and some numerical examples. 
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The hydrolysis of LaF 3 and YF s has been studied, and isolated preparations of AcOF and PuOF 
have been examined. LaOF and YOF have been prepared in two forms, one being rhombohedral and 
the other tetragonal. The crystal structures of both forms have been determined and are shown to 
be superstructures based upon the fluorite type. 

PuOF is shown to have the tetragonal structure. The single investigated sample of AcOF appears 
to be truly cubic with the fluorite structure. 

This paper gives the results of a structural study of 
oxyfluorides XOF, where X represents a 5f-element, a 
4f-element or yttrium. The specific compounds which 
have been investigated are AcOF, Pu0F,  LaOF and 
YOF. Yttrium was used as a crystal chemical stand-in 
for elements at the end of the if-series. Since LaOF and 
YOF have been found to be isostructural, it may be 
safely assumed that oxyfluorides XOF of all 4f-elements 
will be structurally analogous. The fact that  Ac0F and 
YOF are isostructural, actinium being the largest of the 
trivalent 5f-elements, makes it possible to predict with 
assurance that  oxyfluorides XOF of all 5f-elements will 
belong to the same isostructural series of compounds. 

The preparations of PuOF and AcOF 
PuOF 

In early 1944 J. Karle tried to prepare plutonium 
metal by atomic hydrogen reduction of plutonium tetra- 
fluoride. The reduction was carried out on the 20/zg. 
scale. The reaction product was submitted to me for 
identification and X-ray diffraction study. 

The diffraction pattern showed the preparation to 
contain about 10 °/o of PuF a. The bulk of the sample 
was found to consist of a cubic face-centered phase with 
a=5.70+0.01 A. A few very weak diffraction lines 
corresponded neither to PuF a nor to the cubic phase. I t  
was at the time assumed that these diffraction lines 
were due to a small amount of impurity. 

On the basis of the method of preparation the cubic 
phase would have to be plutonium metal, a plutonium 
fluoride, an oxyfluoride or an oxide. (In preparations 
on the microgram scale the possible presence of oxygen 
must always be considered.) At the time X-ray dif- 
fraction investigations had led to conclusive identifi- 
cation of plutonium metal and of the following oxides 
and fluorides: PuO~, Pu40 ~, PuO, PuF 4 and PuF 3. The 
cubic face-centered phase found in Karle's preparation 
corresponded to none of the previously identified com- 
pounds. 

On the basis of extensive experimental data I had 
shown that  the volume required by an oxygen or a 
fluorine atom in compounds of the heavy elements is 
about 19 A. 3, and that  the volume requirement of the 
heavy cation could be neglected in the first approxi- 
mation. Since the unit-cell volume of the cubic phase 
is 185 A. 8, eight oxygen plus fluorine atoms per unit 
cell were strongly indicated. The observed intensities 
required four plutonium atoms in the unit cell and a 
fluorite type of structure. 

Thus the two possible chemical formulas for the 
unknown cubic phase were found to be PuF~ or PuOF. 
The cation-anion distance of 2.47 A. favored the 
formula Pu0F.  However, too little was known about 
the chemistry and crystal chemistry of plutonium at 
that time to justify a reliable decision between the two 
formulas on the basis of interionic distances. 


